Influence of environment on the photooxidation of tryptophan with the carcinogenic hydrocarbon 3,4-benzopyrene in aqueous solutions of soap, caffeine, and urea.
نویسندگان
چکیده
The solvent dependence of the photooxidation of tryptophan and 3,4-benzopyrene in aqueous solutions was studied by quantum yield measurements. When the hydrocarbon is dissolved in aqueous solution of caffeine, the quantum yields indicate a 3,4-benzopyrene photosensitized trypto phan oxidation instead of a photocooxidation, which is indicated in aqueous solution of sodium dodecylsulfate. The same photosensitized oxidation as in caffeine solution is observed, when urea (6 m ) is added to the soap solution, while the fluorescence and absorption spectra indicate no change in the solvation state of the hydrocarbon, comparable to the change from hydrophobic solubilization by the detergent to dipole — induced dipole complex solubilization by caffeine. It is concluded that the difference in the reaction pathways is caused by different solvation states of the excited or reacting oxygen. In the discussion of the results it is referred to reactions of inhibitors.
منابع مشابه
Removal of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies
The occurrence of contaminants in wastewaters, and their behavior during wastewater treatment and production of drinking water are key issues to re-use water resources. The present research aims to remove caffeine from aqueous solutions via adsorption technique, using Multi-Wall Carbon Nanotubes (MWCNTs) as an adsorbent under different experimental conditions. The processing variables such as p...
متن کاملRemoval of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies
The occurrence of contaminants in wastewaters, and their behavior during wastewater treatment and production of drinking water are key issues to re-use water resources. The present research aims to remove caffeine from aqueous solutions via adsorption technique, using Multi-Wall Carbon Nanotubes (MWCNTs) as an adsorbent under different experimental conditions. The processing variables such as p...
متن کاملUsing Generation 3 Polyamidoamine Dendrimer as Adsorbent for the Removal of Pentavalent Arsenic from Aqueous Solutions
Introduction: Arsenic is known as a carcinogenic compound in drinking water. It can cause acute and chronic effects on human health. In this study, the effect of polyamidoamine dendrimer generation 3 (PAMAM G3) as adsorbents for removal of arsenic (V) from aqueous solutions was evaluated. Materials and Methods: Adsorption experiment was studied in batch system and the effect of different varia...
متن کاملRemoval of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron
Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI) in the removal of dye acid red 18 (AR18) from aqueous solutions. Materia...
متن کاملInvestigation on the Removal of Malachite Green from Aqueous Solutions Using Photocatalysis of Titanium Dioxide and Zinc Oxide Nanoparticles
Background & objectives: Malachite green color has been extensively used in aquaculture industry around the world. The drainage of colored wastewater containing malachite green to aquatic ecosystems has created very serious risks for human health and the environment. The purpose of this study was to investigate the removal of green malachite from aqueous solutions using photocatalysis of titani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie
دوره 28 7 شماره
صفحات -
تاریخ انتشار 1973